Beyond Basic Logic
Programming

Basic Logic Programming

* Datasets

* Queries

* Updates

* View Definitions
* Operations

Beyond Basic Logic Programming

e View definitions

* No disjunctions in the head
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

e Updates
* Updates to the logic program
e Constraint checking

Beyond Basic Logic Programming

e View definitions

* No disjunctions in the dataset (and rule heads)
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

e Updates
* Updates to the logic program
e Constraint checking

Disjunctive Logic Programs

male(joe) | female (joe)

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe:
Herbrand Base:

Herbrand Interpretations:

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}
Herbrand Base:

Herbrand Interpretations:

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}
Herbrand Base: {male(joe), female(joe)}

Herbrand Interpretations:

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}
Herbrand Base: {male(joe), female(joe)}

Herbrand Interpretations:
{male(joe)}
{female(joe)}
{male(joe),female(joe)}

U

Semantics

* An interpretation I satisfies a ground atom ¢, if I’
* An interpretation I satisfies a ground negation ~¢, if pgI

Semantics

* An interpretation I satisfies a ground atom ¢, if I’
* An interpretation I satisfies a ground negation ~¢, if pgI

Closed World Assumption

Semantics

* An interpretation I satisfies a ground atom ¢, if I’
* An interpretation I satisfies a ground negation ~¢, if pgI

* An interpretation I satisfies an arbitrary logic program Q if and only if
I satisfies every ground instance of every sentence in Q.

Semantics

* An interpretation I satisfies a ground atom ¢, if I’
* An interpretation I satisfies a ground negation ~¢, if pgI

* An interpretation I satisfies an arbitrary logic program Q if and only if
I satisfies every ground instance of every sentence in Q.

* A factoid is logically entailed by a closed logic program if and only if it
is true in every model of the program, i.e., the set of conclusions is
the intersection of all models of the program.

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:
{male(joe)}
{female(joe)}
{male(joe),female(joe)}

U

Models

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

A factoid is logically entailed by a closed logic program if and
only if it is true in every model of the program,

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true?
Is female(joe) true?

Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

A factoid is logically entailed by a closed logic program if and
only if it is true in every model of the program,

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

A factoid is logically entailed by a closed logic program if and
only if it is true in every model of the program,

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Is “male(joe) true?

Herbrand Universe: {joe} _
Is “female(joe) true?

Herbrand Interpretations:

{male(joe),female(joe)}

U

A factoid is logically entailed by a closed logic program if and
only if it is true in every model of the program,

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Is “male(joe) true? Yes

Herbrand Universe: {joe} _
Is “female(joe) true? Yes

Herbrand Interpretations:

{male(joe),female(joe)}

U

A factoid is logically entailed by a closed logic program if and
only if it is true in every model of the program,

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Is male(joe) true? No
Is female(joe) true? No
Is “male(joe) true? Yes
Is “female(joe) true? Yes
Inconsistent

A factoid is logically entailed by a closed logic program if and

only if it is true in every model of the program,

Semantics

* An interpretation I satisfies a ground atom ¢, if I’
* An interpretation I satisfies a ground negation ~¢, if pgI

Generalized Closed World Assumptions

e H: Herbrand Base

e D: Definite facts are a union of
e Set of all facts that are true in all the models
e Set of all facts that are false in all the models

e | : Indefinite facts are H-D

Generalized Closed World Assumption

* An interpretation I satisfies a ground atom ¢, if pel’
* An interpretation I satisfies a ground negation ~¢, if pI

* An interpretation I satisfies a ground disjunction ¢,,..., ¢, if T’
satisfies at least one ¢..

Generalized Closed World Assumption

* An interpretation I satisfies a ground atom ¢, if pel’
* An interpretation I satisfies a ground negation ~¢, if pI

* An interpretation I satisfies a ground disjunction ¢,,..., ¢, if T’
satisfies at least one ¢..

* An interpretation I satisfies an arbitrary logic program Q if and only if
I satisfies every ground instance of every sentence in Q2.

* A factoid is logically entailed by a closed logic program if and only if it
is true in every model of the program, i.e., the set of conclusions is
the intersection of all models of the program.

Generalized Closed World Assumption

* An interpretation I satisfies a ground atom ¢, if pel’
* An interpretation I satisfies a ground negation ~¢, if I’

* An interpretation I satisfies a ground disjunction ¢,,..., ¢, if T’
satisfies at least one ¢..

* An interpretation I satisfies an arbitrary logic program Q if and only if
I satisfies every ground instance of every sentence in Q2.

* A factoid is logically entailed by a closed logic program if and only if it
is true in every model of the program, i.e., the set of conclusions is
the intersection of all models of the program.

only if it appears in the definite set

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: Facts that are true or false in all the minimal models
Indefinite facts: remaining facts

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true?
Is female(joe) true?

Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Is “male(joe) true?

Herbrand Universe: {joe} _
Is “female(joe) true?

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Disjunctive Logic Programs

male(joe) | female (joe) Is male(joe) true? No
Is female(joe) true? No

Is “male(joe) true? No

Herbrand Universe: {joe} _
Is ~“female(joe) true?No

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Is male(joe) true? No
Is female(joe) true? No
Is “male(joe) true? No
Is ~“female(joe) true?No
Is male(joe) | female(joe)
true?

Disjunctive Logic Programs

male(joe) | female (joe)
Herbrand Universe: {joe}

Herbrand Interpretations:

{male(joe),female(joe)}

U

Definite facts: {}
Indefinite facts: {male(joe), female(joe)}

Is male(joe) true? No
Is female(joe) true? No
Is “male(joe) true? No
Is ~“female(joe) true?No
Is male(joe) | female(joe)
true? Yes

Disjunctive Logic Programs

* Model intersection property breaks down
* ie, intersection of all the minimal models is not a model

* Generalized Closed World Assumption is a possible solution
* Explicitly keep record of definite and indefinite facts

Beyond Basic Logic Programming

e Limitations on view definitions

* No disjunctions in the dataset
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

e Updates
* Updates to the logic program
e Constraint checking

Constraint Logic Programs

e Consider Peano Arithmetic (Section 10.2 of the textbook)

number(0)
number(s(X)) :- number(X)

add(0,Y)Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

Constraint Logic Programs

e Consider Peano Arithmetic

number(0)
number(s(X)) :- number(X)

add(0,Y)Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

number(L) & number(M) & add(L,M,N) & add(L,M,s(N))

Constraint Logic Programs

e Consider Peano Arithmetic

number(0)
number(s(X)) :- number(X)

add(0,Y)Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

number(L) & number(M) & add(L,M,N) & add(L,M,s(N))
Runs forever in the standard LP evaluation algorithm

Constraint Logic Programs

e Consider Peano Arithmetic

number(0)
number(s(X)) :- number(X)

add(0,Y)Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

number(L) & number(M) & add(L,M,N) & add(L,M,s(N))

Runs forever in the standard LP evaluation algorithm
Solution: Check satisfaction of constraints at each step

Constraint Logic Programs

* Direct expression of constraints
sumto(0,0) O
sumto(1,1) O0+1
sumto(2,3) 0+1+2
sumto(3,6) O0+1+2+3

Constraint Logic Programs

* Direct expression of constraints

sumto(0,0)
sumto(N,S) :-N>1 & N £S & sumto(N-1,5-1)

Constraint Logic Programs

* Direct expression of constraints

sumto(0,0)
sumto(N,S) :-N>1 & N £S & sumto(N-1,5-1)

Prove: S<=1

N=N;&S=S, &N;>21&N,<S; & sumto(N;-1,S,-1)

Constraint Logic Programs

* Many problems can be naturally expressed as constraints

* Map coloring
« SEND MORE MONEY

* Constraints with floating point numbers
* Distributed constraints
e Constraint optimization (Assignment 4.3)

Beyond Basic Logic Programming

e Limitations on view definitions

* No disjunctions in the dataset
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

e Updates
* Updates to the logic program
e Constraint checking

Stratified Negation

A set of rules 1s said to be stratified 1t and only if there 1s

no recursive cycle in the dependency graph involving a
negation.

Stratified Negation:
I'(X,Z) .= p(XrY)

e

r(X,z) :- r(X,Y) & r(Y,2))

Negation that 1s not stratified: g
r(X,z2) := p(X,Y) $
r(X,z) :- p(X,Y) & ~r(Y,2) P

All negations must be stratified.

Minimal Models

If a program has just one minimal model, then every factoid

true 1n that model 1s trivially true in every model of the
program.

A logic program that does not contain any negations has a
unique minimal model.

Alogic program with negations can have more than one
minimal model (1n addition to multiple non-minimal
models).

If a program 1s stratified (as defined below), then once again
there 1s only one minimal model.

Multiple Minimal Models

Dataset
p(a,b
p(b,a
Ruleset
r(X) := p(X,Y¥) & ~r(Y)
Interpretations
p(a,b) p(a,b)
p(b,a) p(b,a)
r(a) r(b)

Is r(a) true or not? What about r(b)?
The intersection of all models is not necessarily a model!

Answer Set Semantics

* Defining semantics for programs that *may not* be stratified

Answer Set Semantics

* Defining semantics for programs that *may not* be stratified

* To check if a set S of atoms is an answer set of a program, compute the reduct
of the grounded program as follows:

* For any rule that contains negative atoms in the body that do not appear in S, we drop
those atoms from the rule, and retain only its positive atoms

* We drop rest of the rules
* We compute the extension of the rules
 If the extension is the same as S, then S is the answer set of the program

Example

Data Set
p(a,b) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) : pl(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?
p(b,a)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,b) p(b,a)

Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) : pl(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?
p(b,a)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,b) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) :- pla,b) &b}
r(b) - p(b,a) &—ra)—

Is p(a,b) an answer set?
p(b,a)

Example

Data Set
p(a,b) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) :- pla,b) &b}
r(b) - p(b,a) &—ra)—

Is p(a,b) an answer set?
p(b,a)

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
retain only its positive atoms

We drop the rest of the rules

We compute the extension of the rules

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and

Data Set retain only its positive atoms
p(a’b) p(b’a) We drop the rest of the rules
Rules |
We compute the extension of the rules
r(X) - p(XyY) & ~r(Y) o |
If the extension is the same as S, then S is
Grounded program: the answer set of the program

r(@Q) :- p(ab) &—rb)-
r(b) :- p(ba) & —=r{a)— p(a,b)

b,a
Is p(a,b) an answer set? Extension = rp((a))

p(b,a) (b)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and

Data Set retain only its positive atoms
p(a’b) p(b’a) We drop the rest of the rules
Rules |
We compute the extension of the rules
r(X) - p(XyY) & ~r(Y) o |
If the extension is the same as S, then S is
Grounded program: the answer set of the program

r(@Q) :- p(ab) &—rb)-
r(b) :- p(ba) & —=r{a)— p(a,b)

b,a
Is p(a,b) an answer set? No Extension = rp((a))

p(b,a) (b)

Example

Data Set
p(a,b) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) :- pla,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)
Is p(a,b) an answer set?
p(b,a)

r(a)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,b) p(b,a)

Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) : pl(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?

p(b,a)
r(a)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,o) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(@) - plab) —&—=rtb)—
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?

p(b,a)
r(a)

Example

Data Set

p(a,b) p(b,a)
Rules

r(X) = p(XY) & ~r(Y)
Grounded program:

r(a) :- pla,b) &—rb)
F(-b) . p(b/a) &— (a)
Is p(a,b) an answer set?
p(b,a)
r(a)

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
retain only its positive atoms

We drop the rest of the rules

We compute the extension of the rules

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and

Data Set retain only its positive atoms
p(a’b) p(b’a) We drop the rest of the rules
Rules |
We compute the extension of the rules
r(X) - p(XyY) & ~r(Y) o |
If the extension is the same as S, then S is
Grounded program: the answer set of the program

r(a) :- pla,b) &—rb)
b ——plba)—&—=r(a) p(a,b)

Is p(a,b) an answer set? Extension = p(b,a)
o(b.a) xtension = (a)

r(a)

Example

Data Set

p(a,b) p(b,a)

Rules
r(X) :- ~r(Y)

Grounded program:

p(X)Y) &

r(@) - p(ab) —&—=rfb)—
r{b)——plbsal—&—=r{a)—
Is p(a,b) an answer set? Yes

p(b,a)
r(a)

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
retain only its positive atoms

We drop the rest of the rules
We compute the extension of the rules

If the extension is the same as S, then S is
the answer set of the program

p(a,b)

. p(b,a)
Extension = (a)

Example

Data Set
p(a,b) p(b,a)
Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) :- pla,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)
Is p(a,b) an answer set?
p(b,a)

r(a), r(b)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,b) p(b,a)

Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) : pl(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?

p(b,a)
r(a), r(b)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
Data Set P those gtoms

retain only its positive atoms

p(a,b) p(b,a)

Rules
r(X) = p(XY) & ~r(Y)
Grounded program:
r(a) : pl(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

Is p(a,b) an answer set?

p(b,a)
r(a), r(b)

Example

Data Set

p(a,b) p(b,a)
Rules

r(X) = p(XY) & ~r(Y)
Grounded program:

Is p(a,b) an answer set?

p(b,a)
r(a), r(b)

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and
retain only its positive atoms

We drop the rest of the rules

We compute the extension of the rules

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and

Data Set retain only its positive atoms
p(a’b) p(b’a) We drop the rest of the rules
Rules |
We compute the extension of the rules
r(X) - p(XyY) & ~r(Y) o |
If the extension is the same as S, then S is
Grounded program: the answer set of the program

s p(a,b) an answer set? | p(a,b)
o(b,a) Extension = o(b,a)

r(a), r(b)

Example

For any rule that contains negative atoms
in the body that do not appearin S, we
drop those atoms from the rule, and

Data Set retain only its positive atoms
p(a’b) p(b’a) We drop the rest of the rules
Rules |
We compute the extension of the rules
r(X) - p(XyY) & ~r(Y) o |
If the extension is the same as S, then S is
Grounded program: the answer set of the program

Is p(a,b) an answer set? No Extension = p(a,b)
p(b,a) FENSION T p(b,a)

r(a), r(b)

Multiple Minimal Models

Dataset
p(a,b
p(b,a
Ruleset
r(X) := p(X,Y¥) & ~r(Y)
Interpretations
p(a,b) p(a,b)
p(b,a) p(b,a)
r(a) r(b)

Is r(a) true or not? What about r(b)?
The intersection of all models is not necessarily a model!

Implementing an Answer Set Solver

e Start with an empty answer set
e Add one atom at a time to the answer set

* Compute all the atoms that can be derived
e |f a contradiction is obtained abandon that answer set

* Repeat

Implementing an Answer Set Solver

e Foraruler
* head(r): atom in the head of the rule r
 positive(r): set of positive atoms in the body of the rule r
* negative(r): set of the negative atoms in the body of the rule r

Implementing an Answer Set Solver

e Foraruler
* head(r): atom in the head of the rule r
 positive(r): set of positive atoms in the body of the rule r
* negative(r): set of the negative atoms in the body of the rule r

If an atom does not appear in the head of any rule, it cannot appear in any answer set

Implementing an Answer Set Solver

e Foraruler
* head(r): atom in the head of the rule r
 positive(r): set of positive atoms in the body of the rule r
* negative(r): set of the negative atoms in the body of the rule r

If an atom does not appear in the head of any rule, it cannot appear in any answer set

If an atom appears in the answer set S, then there must exist a rule r such that
positive(r) € S
negative(r) € S

Implementing an Answer Set Solver

compute_answer_sets(P)

return solve(P, @, @)

solve(P, CS, CN)
if expand(P, CS, CN) = false then return @
(CS,CN) € expand(P,CS,CN)
Select an atom a & CS U CN
return solve(P,CSU{a},CN) U solve(P,CS,CNuU{a})

Implementing an Answer Set Solver

expand(P, CS, CN)
repeat
change < false
find all rules r such that
positive(r) € CS and negative(r) € CN
add head(r) to CS
change < true
if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = 0
add head(r) to CN
change < true
until change is false

if CS N CN = @ return (CS,CN) else return false

Implementing an Answer Set Solver

expand(P, CS, CN) CS=0
repeat

change < false

p(a,b) find all rules r such that
p(b,a) positive(r) € CS and negative(r) € CN
r(a) :- p(a,b) & ~r(b) add head(r) to CS

r(b) :- p(b,a) & ~r(a)

change < true
if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = 0
add head(r) to CN
change < true
until change is false

if CS N CN = @ return (CS,CN) else return false

CN

Implementing an Answer Set Solver

expand(P, CS, CN) CS=0 CN=0
repeat

change < false

p(a,b) find all rules r such that
p(b,a) positive(r) € CS and negative(r) € CN
r(a) - p(a,b) & "’r(b) add head(r) to CS CS={p(a,b),p(b,a)}

r(b) :- p(b,a) & ~r(a)

change < true

if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = 0
add head(r) to CN
change < true

until change is false

if CS N CN = @ return (CS,CN) else return false

Implementing an Answer Set Solver

expand(P, CS, CN)
repeat

change < false

p(a,b) find all rules r such that
p(b,a) positive(r) € CS and negative(r) € CN
r(a) :- p(a,b) & ~r(b) add head(r) to CS

r(b) :- p(b,a) & ~r(a)

change < true

if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = 0
add head(r) to CN
change < true

until change is false

if CS N CN = @ return (CS,CN) else return false

CS=0 CN=0

CS={p(a,b),p(b,a)}

CS={p(a,b),p(b,a)} CN=0Q

Implementing an Answer Set Solver

eXpand(P, CS, CN) CS={p(alb)lp(bla)lr(a)} CN = Q)

repeat
change < false
p(a,b) find all rules r such that

p(b,a) positive(r) € CS and negative(r) € CN
r(a) :- p(a,b) & ~r(b) add head(r) to CS

r(b) :- p(b,a) & ~r(a)
change < true

if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = @
add head(r) to CN
change < true
until change is false

if CS N CN = @ return (CS,CN) else return false

CS={p(a,b),p(b,a),r(a)}

CS={p(a,b),p(b,a),r(a)}

CN = {r(b)}

CN = {r(b)}

Implementing an Answer Set Solver

expand(P, CS, CN) CS={p(a,b),p(b,a)} CN = r(a)

repeat

change < false

p(a,b) find all rules r such that
p(b,a) positive(r) € CS and negative(r) € CN
r(a) :- p(a,b) & ~r(b) CS={p(a,b),p(b,a), r(b)} CN = {r(a)}

add head(r) to CS

change < true

r(b) :- p(b,a) & ~r(a)

if all rules r with same head satisfy that
positive(r) N CN # @ or negative(r) N CS = @
add head(r) to CN
change < true

until change is false
if CS n CN = @ return (CS,CN) else return false CS={p(a,b),p(b,a), r(b)} CN={r(a)j

Available Answer Set Solvers

(8 Potassco, the Potsdam Answer Set Solving Collection

Home About Getting Started Documentation Teaching Support

About

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for Answer Set Programming
developed at the University of Potsdam.

Answer Set Programming (ASP) offers a simple and powerful modeling language to solve combinatorial
problems. With our tools you can concentrate on an actual problem, rather than a smart way of
implementing it.

Qur systems won shiny awards in different competitions. Check out our frophy page.

Also see the list of related projects.

Potassco, the Potsdam Answer Set Solving Collection

Potassco, the Potsdam Answer Set Privacy Tools for Answer Set Programming developed at
Solving Collection the University of Potsdam.

CLINGO

VSYSTEMsax.L

IN-OFF OF UNIVERSITY CALABRIA

Company Products Contacts

A[R[T/I[F1[C
I N TELLIGE

DLV pLv™®

ASPIDE
DLV is an artificial DLV® is an extension ofthe ASPIDE is a Integrated
intelligence system based DLV system designed both Development Environment
on disjunctive logic to handle input and output for Answer Set Programming
programming, which offers data distributed on several supporting the entire life-
front-ends to several databases. cycle of ASP development.

advanced KR formalisms.

DLV

L

JDLV

JDLV is a new programming
framework blending DLV with
Java programming.

NEWS

Great success for "JELIA 2019"!

. JELIA 2019

Great success for the public event
held at the Teatro Auditorium UNICAL
at the conclusion of the Jelia 2019
(sponsored by DLVSystem).

Newsletter

Email
B ogbe)
Follow Us!

g Honors and Awards

Extensions to ASP

e Choice rule
* Disjunctions

* Constraints
* Classical negation

Choice Rule

* Enclose a set of atoms in curly braces
* Choose in all possible ways which atoms will be included in the answer set

{p(1), p(2) }
Possible answer sets are @,{p(1)}, {p(2)}, {p(1), p(2)}

Choice Rule

* Enclose a set of atoms in curly braces

* Choose in all possible ways which atoms will be included in the answer set
e Can also indicate bounds on the number of atoms to be included

{p(1), p(2) }
Possible answer sets are @,{p(1)}, {p(2)}, {p(1), p(2)}

1{p(1),p(2) }1
Possible answer sets are {p(1)}, {p(2)}

Constraint

* A rule with an empty head

{p(1), p(2) }
Possible answer sets are @,{p(1)}, {p(2)}, {p(1), p(2)}

- p(1), ~p(2)
Possible answer sets are @, {p(2)}, {p(1), p(2)}

Constraint

* A rule with an empty head
e A constraint is an unstratified rule

* Stratification is defined only for rules with a head
* Therefore, we have to convert a constraint to a rule with a head

q:-p, Nq

Classical Negation

* The predicates can have a classical negation symbol in front of them
* -p(a) indicates that we know for sure that p(a) is false
e ~p(a) indicates that p(a) could be true or false

* Two negation operators can be related

* PP

Beyond Basic Logic Programming

e Limitations on view definitions

* No disjunctions in the dataset (and rule heads)
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
e Existential rules

e Updates
* Updates to the logic program
e Constraint checking

Existential Rules

* A rule that has a functional term in its head

owns(X,house(X)) :- instance_of(X,person)
has_parent(X,f(X)) :- instance_of(X,person)
has_parent(X,g(X)) :- instance_of(X,male)

Existential Rules

* In the context of database systems

john peter
sue peter

peter 27

Also known as:
Tuple generating dependencies (in relational databases)

Existential Rules

* In the context of description logic systems
Person M (dhas_parent.Person)

Also known as:
Existential rules

Problems with Existential Rules

* Termination
has_parent(X,f(X)) :- instance_of(X,person)

Unrestricted application of this rule leads to infinite recursion

Problems with Existential Rules

e Under-specification when used with a class hierarchy
has_parent(X,f(X)) :- instance_of(X,person)
subclass_of(male,person)

has_parent(X,g(X)) :- instance_of(X,male)

What is the relationship between f(X) and g(X)?

Solutions for Existential Rules

* Ensure termination by design
 Limit depth of reasoning
* Rule strengthening

Beyond Basic Logic Programming

e Limitations on view definitions

* No disjunctions in the dataset (and rule heads)
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

* Updates
* Updates to the logic program
e Constraint checking

Updates

* What if the view definitions themselves need to be updated?

* Naturally happens during rule authoring
* Dropping a relation used in multiple rules

 What if an update to the dataset violates some constraint?
* For example, asserting two fathers of a person using a dynamic rule

Beyond Basic Logic Programming

e Limitations on view definitions

* No disjunctions in the dataset (and rule heads)
e Safe and stratified

e Efficiency of computation
e Constraint logic programs
 Existential rules

e Updates
* Updates to the logic program
e Constraint checking

