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Disjunctive Logic Programs

• Model intersection property breaks down
• ie, intersection of all the minimal models is not a model

• Generalized Closed World Assumption is a possible solution
• Explicitly keep record of definite and indefinite facts
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• Consider Peano Arithmetic

number(0)
number(s(X)) :- number(X)

add(0,Y,Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

number(L) & number(M) & add(L,M,N) & add(L,M,s(N))

Runs forever in the standard LP evaluation algorithm
Solution: Check satisfaction of constraints at each step
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Constraint Logic Programs

• Direct expression of constraints

sumto(0,0)
sumto(N,S) :- N ≥ 1 & N ≤ S & sumto(N-1,S-1)

Prove: S <= 1

N = N1 & S = S1 & N1 ≥ 1 & N1 ≤ S1 & sumto(N1-1,S1-1)



Constraint Logic Programs

• Many problems can be naturally expressed as constraints
• Map coloring

• SEND MORE MONEY

• Constraints with floating point numbers

• Distributed constraints

• Constraint optimization (Assignment 4.3)
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Answer Set Semantics

• Defining semantics for programs that *may not* be stratified
• To check if a set S of atoms is an answer set of a program, compute the reduct

of the grounded program as follows:
• For any rule that contains negative atoms in the body that do not appear in S, we drop 

those atoms from the rule, and retain only its positive atoms

• We drop rest of the rules

• We compute the extension of the rules

• If the extension is the same as S, then S is the answer set of the program
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Implementing an Answer Set Solver

• Start with an empty answer set

• Add one atom at a time to the answer set

• Compute all the atoms that can be derived 
• If a contradiction is obtained abandon that answer set

• Repeat
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• positive(r): set of positive atoms in the body of the rule r

• negative(r): set of the negative atoms in the body of the rule r
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Implementing an Answer Set Solver

• For a rule r
• head(r): atom in the head of the rule r

• positive(r): set of positive atoms in the body of the rule r

• negative(r): set of the negative atoms in the body of the rule r

If an atom does not appear in the head of any rule, it cannot appear in any answer set

If an atom appears in the answer set S, then there must exist a rule r such that
positive(r) ⊆ S
negative(r) ⊈ S



Implementing an Answer Set Solver

compute_answer_sets(P)

return solve(P, ∅, ∅) 

solve(P, CS, CN)

if expand(P, CS, CN) = false then return ∅

⟨CS,CN⟩ ← expand(P,CS,CN)

Select an atom a ∉ CS ∪ CN

return solve(P,CS∪{a},CN) ∪ solve(P,CS,CN∪{a})



Implementing an Answer Set Solver

expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false



Implementing an Answer Set Solver

p(a,b)
p(b,a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

CS = ∅ CN = ∅expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false



Implementing an Answer Set Solver

p(a,b)
p(b,a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

CS = ∅ CN = ∅

CS={p(a,b),p(b,a)}

expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false



Implementing an Answer Set Solver

p(a,b)
p(b,a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

CS = ∅ CN = ∅

CS={p(a,b),p(b,a)}

expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false CS={p(a,b),p(b,a)} CN = ∅



Implementing an Answer Set Solver

p(a,b)
p(b,a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

CN = ∅CS={p(a,b),p(b,a),r(a)}expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false

CS={p(a,b),p(b,a),r(a)} CN = {r(b)}

CS={p(a,b),p(b,a),r(a)} CN = {r(b)}



Implementing an Answer Set Solver

p(a,b)
p(b,a)
r(a) :- p(a,b) & ~r(b)
r(b) :- p(b,a) & ~r(a)

CN = r(a)CS={p(a,b),p(b,a)}

CS={p(a,b),p(b,a), r(b)} CN = {r(a)}

CS={p(a,b),p(b,a), r(b)} CN = {r(a)}

expand(P, CS, CN)

repeat

change ← false

find all rules r such that 

positive(r) ⊆ CS and negative(r) ⊆ CN

add head(r) to CS

change ← true

if all rules r with same head satisfy that

positive(r) ∩ CN ≠ ∅ or negative(r) ∩ CS ≠ ∅

add head(r) to CN

change ← true

until change is false

if CS ∩ CN = ∅ return ⟨CS,CN⟩ else return false



Available Answer Set Solvers

CLINGO DLV



Extensions to ASP

• Choice rule
• Disjunctions

• Constraints 

• Classical negation



Choice Rule

• Enclose a set of atoms in curly braces
• Choose in all possible ways which atoms will be included in the answer set

{ p(1), p(2) }

Possible answer sets are  ∅,{p(1)}, {p(2)}, {p(1), p(2)}



Choice Rule

• Enclose a set of atoms in curly braces
• Choose in all possible ways which atoms will be included in the answer set

• Can also indicate bounds on the number of atoms to be included

{ p(1), p(2) }

Possible answer sets are  ∅,{p(1)}, {p(2)}, {p(1), p(2)}

1 { p(1), p(2) } 1

Possible answer sets are {p(1)}, {p(2)}



Constraint

• A rule with an empty head

{ p(1), p(2) }
Possible answer sets are  ∅,{p(1)}, {p(2)}, {p(1), p(2)}

:- p(1), ~p(2)
Possible answer sets are  ∅, {p(2)}, {p(1), p(2)}



Constraint

• A rule with an empty head
• A constraint is an unstratified rule

• Stratification is defined only for rules with a head
• Therefore, we have to convert a constraint to a rule with a head

:- p
q :- p, ~q



Classical Negation

• The predicates can have a classical negation symbol in front of them
• -p(a) indicates that we know for sure that p(a) is false

• ~p(a) indicates that p(a) could be true or false

• Two negation operators can be related
• -p :- ~p



Beyond Basic Logic Programming

• Limitations on view definitions
• No disjunctions in the dataset (and rule heads)
• Safe and stratified

• Efficiency of computation
• Constraint logic programs
• Existential rules

• Updates
• Updates to the logic program
• Constraint checking



Existential Rules

• A rule that has a functional term in its head

owns(X,house(X)) :- instance_of(X,person)

has_parent(X,f(X)) :- instance_of(X,person)

has_parent(X,g(X)) :- instance_of(X,male)



Existential Rules

• In the context of database systems

Also known as: 

Tuple generating dependencies (in relational databases)

has parent

john peter

sue peter

peter ??

… …



Existential Rules

• In the context of description logic systems

Person ⊓ (has_parent.Person)

Also known as: 

Existential rules 



Problems with Existential Rules

• Termination

has_parent(X,f(X)) :- instance_of(X,person)

Unrestricted application of this rule leads to infinite recursion



Problems with Existential Rules

• Under-specification when used with a class hierarchy

has_parent(X,f(X)) :- instance_of(X,person)

subclass_of(male,person)

has_parent(X,g(X)) :- instance_of(X,male)

What is the relationship between f(X) and g(X)?



Solutions for Existential Rules

• Ensure termination by design

• Limit depth of reasoning

• Rule strengthening



Beyond Basic Logic Programming

• Limitations on view definitions
• No disjunctions in the dataset (and rule heads)
• Safe and stratified

• Efficiency of computation
• Constraint logic programs
• Existential rules

• Updates
• Updates to the logic program
• Constraint checking



Updates

• What if the view definitions themselves need to be updated?
• Naturally happens during rule authoring

• Dropping a relation used in multiple rules

• What if an update to the dataset violates some constraint?
• For example, asserting two fathers of a person using a dynamic rule



Beyond Basic Logic Programming

• Limitations on view definitions
• No disjunctions in the dataset (and rule heads)
• Safe and stratified

• Efficiency of computation
• Constraint logic programs
• Existential rules

• Updates
• Updates to the logic program
• Constraint checking


