Logic Programming

Datasets

Michael Genesereth
Computer Science Department
Stanford University
Datasets

Dataset - collection of simple facts about application area
- Facts in dataset are assumed to be true
- Facts not in dataset are assumed to be false

Datasets as logic programs
- simplest forms of logic programs
- used by selves as standalone databases
- used in combination with rules to form complex programs

Datasets as basis for semantics of logical rules
Conceptualization

Objects - e.g. people, companies, cities
 - concrete (*person*) or abstract (*number, set, justice*)
 - primitive (*computer chip*) or composite (*car*)
 - real (*earth*) or fictitious (*Sherlock Holmes*)

Relationships
 - properties of objects or relationships among objects
 - e.g. Joe *is a person*
 - e.g. Joe *is the parent of* Bill
 - e.g. Joe *likes* Bill *more than* Harry
<table>
<thead>
<tr>
<th>parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>art</td>
</tr>
<tr>
<td>art</td>
</tr>
<tr>
<td>bob</td>
</tr>
<tr>
<td>bob</td>
</tr>
<tr>
<td>bea</td>
</tr>
<tr>
<td>bea</td>
</tr>
</tbody>
</table>
Art is the parent of Bob.
Art is the parent of Bea.
Bob is the parent of Cal.
Bob is the parent of Cam.
Bea is the parent of Cat.
Bea is the parent of Coe.

Formal Language
parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)
Constants are strings of lower case letters, digits, underscores, and periods or strings of arbitrary ascii characters within double quotes.

Examples:

joe, bill, cs151, 3.14159
person, worksfor, office.occupant
the_house_that_jack_built,
"Mind your p’s & q’s!"

Non-examples:

Art, p&q, the-house-that-jack-built

A set of constants is called a vocabulary.
Types of Constants

Symbols / object constants represent objects.
 joe, bill, harry, a23, 3.14159
 the_house_that_jack_built
 “Mind your p’s & q’s!”

Constructors / function constants represent functions.
 pair, triple, set

Predicates / relation constants represent relations.
 person, parent, prefers
The **arity** of a constructor or a predicate is the number of arguments that can be associated with the constructor or predicate in writing complex expressions in the language.

Unary predicate (1 argument): \(\text{person}(joe) \)

Binary predicate (2 arguments): \(\text{parent}(\text{art}, \text{bob}) \)

Ternary predicate (3 arguments): \(\text{prefers}(\text{art}, \text{bob}, \text{bea}) \)

In defining vocabulary, we sometimes notate the arity of a constructor or predicate by annotating with a slash and the arity, e.g. \(\text{male}/1 \), \(\text{parent}/2 \), and \(\text{prefers}/3 \).
In some logic programming languages (e.g. Prolog), types and arities determine syntactic legality; and they are enforced by interpreters and compilers.

In other languages (e.g. Epilog), types and arities suggest their intended use. However, they do not determine syntactic legality, and they are not enforced by interpreters and compilers.

In our examples, we use Epilog; but, in this course, we specify types and arities where appropriate and we try to adhere to them.
A **ground term** is either a symbol or a compound name.

A **compound name** is an expression formed from an n-ary **constructor** and n ground terms enclosed in parentheses and separated by commas.

Symbols: a, b
Constructor: $f/1, g/1$
Ground terms: $f(a), f(a), g(a), g(b)$
Ground term: $f(f(a)), f(g(a)), g(f(a)), g(g(a))$

The adjective “ground” here means that the term does not contain any “variables” (which we discuss in later lessons).
The **Herbrand universe** for a vocabulary is the set of all ground terms that can be formed from the symbols and constructors in the vocabulary.

NB: For a finite vocabulary without constructors, the Herbrand universe is finite (i.e. just the symbols).

NB: For a finite vocabulary *with* constructors, the Herbrand universe is infinite (i.e. the symbols and all compound names that can be formed from those symbols).

\[a, f(a), f(f(a)), f(f(f(a))), \ldots \]
A **datum / factoid / fact** is an expression formed from an \(n \)-ary **predicate** and \(n \) ground terms enclosed in parentheses and separated by commas.

Symbols: \(a, b \)
Constructor: \(f/1 \)
Predicate: \(p/2, q/1 \)

Sample Datum: \(p(a, b) \)
Sample Datum: \(p(f(a), f(b)) \)
Sample Datum: \(q(a) \)
Sample Datum: \(q(f(b)) \)

The **Herbrand base** for a vocabulary is the set of all factoids that can be formed from the vocabulary.
A **dataset** is any set of factoids that can be formed from a vocabulary, i.e. a subset of the Herbrand base.

Symbols: \(a, b\)
Predicate: \(p/2, q/1\)

Dataset: \(\{p(a, b), p(b, a), q(a)\}\)
Dataset: \(\{\}\)
Dataset: \(\{p(a, a), p(a, b), p(b, a), p(b, b), q(a), q(b)\}\)

We use datasets to characterize states of the world. The facts in a dataset are assumed to be true and those that are not in the dataset are assumed to be false.
Exercise

Vocabulary
Symbols: \(a, b\)
Predicates: \(p/2, q/1\)

Questions
How many elements in the Herbrand universe?
How many elements in the Herbrand base?
How many possible datasets?
Vocabulary

Symbols: \(a, b\)
Constructors: \(f, g\)
Predicates: \(p/2, q/1\)

Questions

How many elements in the Herbrand universe?
How many elements in the Herbrand base?
How many possible datasets?
Spelling carries no meaning in logic programming (except as informal documentation for programmers).

\[\text{parent(art, bob)}\]
\[\text{parent(bob, cal)}\]
\[p(a, b)\]
\[p(b, c)\]
\[\text{coulish(widget, gadget)}\]
\[\text{coulish(gadget, framis)}\]

The *meaning* of a constant in logic programming is determined solely by the sentences that mention it.
The order of arguments in an instance of a relation is determined by one’s understanding of the relation.

Example:

\[\text{prefers(art, bea, bob)} \]

For me, this sentence means that Art prefers Bea to Bob. Other interpretations are possible; the important thing is to be consistent - once you choose, stick with it.
Kinship
Parentage

Diagram:

- Art
 - Bob
 - Cal
 - Cam
 - Bea
 - Cat
 - Coe
Kinship Relations
Degenerate Relations

\[
\text{bob} \quad \text{bea} \quad \text{cal} \quad \text{cam} \quad \text{cat} \quad \text{coe}
\]

\[
\text{art}
\]

A diagram showing relationships between the entities: art, bob, bea, cal, cam, cat, and coe.
parent(art, bob)
parent(art, bud)
parent(bob, cal)
parent(bob, cam)
parent(bea, cat)
parent(bea, coe)
grandparent(art, cal)
grandparent(art, cam)
grandparent(art, cat)
grandparent(art, coe)
sibling(bob, bea)
sibling(bea, bob)
sibling(cal, cam)
sibling(cam, cal)
sibling(cat, coe)
sibling(coe, cat)
ancestor(art, bob)
ancestor(art, bea)
ancestor(art, cal)
ancestor(art, cam)
ancestor(art, cat)
ancestor(art, coe)
ancestor(bob, cal)
ancestor(bob, cam)
ancestor(bea, cat)
ancestor(bea, coe)
Other Relations

Unary Relations:
- male(art)
- male(bob)
- male(cal)
- male(cam)
- female(bea)
- female(cat)
- female(coe)

Ternary Relations:
- prefers(art, bob, bea)
- prefers(bob, cam, cal)
- prefers(bea, cat, coe)
Some relations definable in terms of others
 e.g. we can define grandparent in terms of parent
 e.g. we can define sibling in terms of parent
 e.g. we can define ancestor in terms of parent
 e.g. we can define parent in terms of ancestor
See upcoming material on view definitions

Some combinations of arguments do not make sense
 e.g. parent(art,art)
 e.g. parent(art,bob) and parent(bob,art)
 e.g. old(art) and young(art)
See upcoming material on constraints
Blocks World
Blocks World
Symbols: a, b, c, d, e

Unary Predicates:
 clear - blocks with no blocks on top.
 table - blocks on the table.

Binary Predicates:
 on - pairs of blocks in which first is on the second.
 above - pairs in which first block is above the second.

Ternary Predicates:
 stack - triples of blocks arranged in a stack.
clear(a)
clear(d)
table(c)
table(e)
on(a,b)
on(b,c)
on(d,e)
above(a,b)
above(b,c)
above(a,c)
above(d,e)
stack(a,b,c)
University
<table>
<thead>
<tr>
<th>Students:</th>
<th>Departments:</th>
<th>Faculty:</th>
<th>Years:</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaron</td>
<td>architecture</td>
<td>alan</td>
<td>freshman</td>
</tr>
<tr>
<td>belinda</td>
<td>computers</td>
<td>cathy</td>
<td>sophomore</td>
</tr>
<tr>
<td>calvin</td>
<td>english</td>
<td>donna</td>
<td>junior</td>
</tr>
<tr>
<td>george</td>
<td>physics</td>
<td>frank</td>
<td>senior</td>
</tr>
</tbody>
</table>

Predicate:

\[
\text{student}(\text{Student},\text{Department},\text{Advisor},\text{Year})
\]

Dataset:

- student(aaron,architecture,alan,freshman)
- student(belinda,computers,cathy,sophomore)
- student(calvin,english,donna,junior)
- student(george,physics,frank,senior)
Missing Values

Suppose a student has not declared a major. What if a student does not have an advisor?

Leave out fields (syntactically illegal):

\[
\text{student}(\text{aaron},,,\text{freshman})
\]

Add suitable values to vocabulary (new symbol):

\[
\text{student}(\text{aaron},\text{undeclared},\text{orphan},\text{freshman})
\]

Database nulls (new linguistic feature):

\[
\text{student}(\text{aaron},\text{null},\text{null},\text{freshman})
\]
Suppose a student has two majors.

Multiple Rows (storage, update inconsistencies):
- student(calvin,english,donna,junior)
- student(calvin,physics,donna,junior)

Multiple fields (storage, extensibility?):
- student(calvin,english,physics,donna,junior)
- student(george,physics,physics,frank,senior)

Use compound names:
- student(calvin,pair(english,physics),donna,junior)
Represent wide relations as collections of binary relations.

Wide Relation:
```
student(Student,Department,Advisor,Year)
```

Binary Relations:
```
student.major(Student,Department)
student.advisor(Student,Faculty)
student.year(Student,Year)
```

Always works when there is a field of the wide relation (called the **key**) that uniquely specifies the values of the other elements. If none exists, possible to create one.
student.major(aaron,architecture)
student.advisor(aaron,alan)
student.year(aaron,freshman)

student.year(belinda,sophomore)

student.major(calvin,english)
student.major(calvin,physics)
student.advisor(calvin,donna)
student.year(calvin,senior)

student.major(george,physics)
student.advisor(george,frank)
student.year(george,senior)
Classes

student, department, faculty, year

Attributes (binary relations associated with a class):

student.major(Student, Department)
student.advisor(Student, Faculty)
student.year(Student, Year)

Properties of Attributes:

domain is class of objects in first position (arguments)
range is class of objects in second position (values)
unique if at most one value for each argument
total if at least one value for each argument
Missing information
there is a value but we do not know it.
e.g. Aaron has an advisor but we do not know who it is.

Non-existent value
there is no value
e.g. Aaron does not have an advisor.

For now, in talking about datasets, we assume full info. If a value is missing, there is none.
In 2015, Art sold Arborhouse to Bob for $1000000.
In 2016, Bob sold Pelicanpoint to Carl for $2000000.
In 2016, Carl sold Ravenswood to Dan in $2000000.
In 2017, Dan sold Ravenswood to Art for $3000000.
Real Estate Ledger

<table>
<thead>
<tr>
<th>People:</th>
<th>Properties:</th>
<th>Years:</th>
<th>Money:</th>
</tr>
</thead>
<tbody>
<tr>
<td>art</td>
<td>arborhouse</td>
<td>2015</td>
<td>1000000</td>
</tr>
<tr>
<td>bob</td>
<td>pelicanpoint</td>
<td>2016</td>
<td>2000000</td>
</tr>
<tr>
<td>carl</td>
<td>ravenswood</td>
<td>2017</td>
<td>3000000</td>
</tr>
<tr>
<td>dan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relation Constant:

sale(Year,Seller,Property,Buyer,Amount)

Dataset:

sale(2015,art,arborhouse,bob,1000000)
sale(2016,art,pelicanpoint,bob,2000000)
sale(2016,carl,ravenswood,dan,2000000)
sale(2017,dan,arborhouse,art,3000000)
In 2015, Art sold Arborhouse to Bob for $1000000.
In 2016, Bob sold Pelicanpoint to Carl for $2000000.
In 2016, Carl sold Ravenswood to Dan in $2000000.
In 2017, Dan sold Ravenswood to Art for $3000000.

In 2015, Art sold Bob a widget for $10.
In 2016, Art sold Bob a gadget for $20.
In 2016, Art sold Bob another gadget for $20.
In 2017, Art sold Bob a framis for $30.
Sales Ledger

<table>
<thead>
<tr>
<th>People:</th>
<th>Items:</th>
<th>Years:</th>
<th>Money:</th>
</tr>
</thead>
<tbody>
<tr>
<td>art</td>
<td>widget</td>
<td>2015</td>
<td>10</td>
</tr>
<tr>
<td>bob</td>
<td>gadget</td>
<td>2016</td>
<td>20</td>
</tr>
<tr>
<td>carl</td>
<td>framis</td>
<td>2017</td>
<td>30</td>
</tr>
<tr>
<td>dan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relation Constant:

\[
sale(Year, Seller, Item, Buyer, Amount)
\]

Dataset:

\[
sale(2015, art, widget, bob, 10)
\]
\[
sale(2016, art, gadget, bob, 20)
\]
\[
sale(2016, art, gadget, bob, 20) \quad \text{Duplicate factoid}!?
\]
\[
sale(2017, art, framis, bob, 30)
\]
Sales Ledger

<table>
<thead>
<tr>
<th>Sales:</th>
<th>People:</th>
<th>Items:</th>
<th>Years:</th>
<th>Money:</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>art</td>
<td>widget</td>
<td>2015</td>
<td>10</td>
</tr>
<tr>
<td>t2</td>
<td>bob</td>
<td>gadget</td>
<td>2016</td>
<td>20</td>
</tr>
<tr>
<td>t3</td>
<td>carl</td>
<td>framis</td>
<td>2017</td>
<td>30</td>
</tr>
<tr>
<td>t4</td>
<td>dan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relation Constant:

\[
sale(\text{Sale}, \text{Year}, \text{Seller}, \text{Item}, \text{Buyer}, \text{Amount})
\]

Dataset:

\[
\begin{align*}
sale(t1, 2015, art, widget, bob, 10) \\
sale(t2, 2016, art, gadget, bob, 20) \\
sale(t3, 2016, art, gadget, bob, 20) \\
sale(t4, 2017, art, framis, bob, 30)
\end{align*}
\]
Sierra
Sierra is browser-based IDE (interactive development environment) for Epilog.

- Saving and loading files
- Visualization of datasets
- Querying datasets
- Transformation tools for datasets
- Interpreter (for view definitions, action definitions)
- Trace capability (useful for debugging rules)
- Analysis tools (error checking and optimizing rules)

http://epilog.stanford.edu/homepage/sierra.php
\[p(c,d) \]
\[p(a,b) \]
\[p(b,c) \]
\(p(a, b) \)
\(p(b, c) \)
\(p(c, d) \)
\[p(a,b) \]
\[p(b,c) \]
\[p(c,d) \]
\begin{align*}
 p(a, b) \\
 p(b, c) \\
 p(c, d) \\
 p(e, f)
\end{align*}
Syntax error.
\[p(a, b) \]
\[p(b, c) \]
\[p(c, d) \]
\[p(a, b) \]
\[p(b, c) \]
\[p(c, d) \]
\begin{align*}
p(a, b) \\
p(b, c) \\
p(c, d)
\end{align*}
p(a, b)
p(b, c)
p(c, d)

Pattern: \text{goal}(X, Z)
Query: p(X, Y) \land p(Y, Z)

goal(a, c)
goal(b, d)
Lambda

\[p(a,b) \]
\[p(b,c) \]
\[p(c,d) \]

Query

Pattern \(\text{goal}(X,Z) \)
Query \(p(X,Y) \land p(Y,Z) \)

\[\text{goal}(a,c) \]
\[\text{goal}(b,d) \]
p(a,b)
p(b,c)
p(c,d)
p(d,e)

Pattern: goal(X,Z)
Query: p(X,Y) & p(Y,Z)

goal(a,c)
goal(b,d)
p(a,b)
p(b,c)
p(c,d)
p(d,e)

Pattern: \text{goal}(X,Z)
Query: p(X,Y) \land p(Y,Z)

goal(a,c)
goal(b,d)
goal(c,e)
Lambda

\begin{align*}
p(a, b) \\
p(b, c) \\
p(c, d) \\
p(d, e) \\
\end{align*}

Query

Pattern: \text{goal}(x, z) \\
Query: p(x, y) \land p(y, z) \\

Transform

Condition:
Conclusion:

Expand: \quad Expand \ on \ update

Execute: \quad Run \ on \ clock \ tick

100 \ result(s) \ & \ Autorefresh
Lambda

p(a,b)
p(b,c)
p(c,d)
p(d,e)

Query

Pattern goal(X, Z)
Query p(X, Y) & p(Y, Z)

100 result(s) Autorefresh

goal(a, c)
goal(b, d)
goal(c, e)

Transform

Condition p(X, Y)
Conclusion ¬p(X, Y) & p(Y, X)

Expand Expand on update
Execute Run on clock tick
Lambda

\begin{align*}
p(b,a) \\
p(c,b) \\
p(d,c) \\
p(e,d) \\
\end{align*}

Query

\begin{align*}
\text{Pattern} & : \text{goal}(x, z) \\
\text{Query} & : p(x, y) \land p(y, z) \\
\end{align*}

Transform

\begin{align*}
\text{Condition} & : p(x, y) \\
\text{Conclusion} & : \neg p(x, y) \land p(y, x) \\
\end{align*}
Lambda

\[p(b,a) \]
\[p(c,b) \]
\[p(d,c) \]
\[p(e,d) \]

Query

Pattern: \text{goal}(X,Z)
Query: \text{p}(X,Y) \land \text{p}(Y,Z)

100 results

Transform

Condition: \text{p}(X,Y)
Conclusion: \neg \text{p}(X,Y) \land \text{p}(Y,X)

\[\neg \text{p}(b,a) \]
\[\text{p}(a,b) \]
\[\neg \text{p}(c,b) \]
\[\text{p}(b,c) \]
\[\neg \text{p}(d,c) \]
\[\text{p}(c,d) \]
\[\neg \text{p}(e,d) \]
\[\text{p}(d,e) \]
Lambda:
- p(a,b)
- p(b,c)
- p(c,d)
- p(d,e)

Query:
- Pattern: goal(X,Z)
- Query: p(X,Y) & p(Y,Z)
- 100 result(s)
- Autorefresh

Transform:
- Condition: p(X,Y)
- Conclusion: \neg p(X,Y) & p(Y,X)
- Expand
- Expand on update
- Execute
- Run on clock tick

- \neg p(a,b)
- p(b,a)
- \neg p(b,c)
- p(c,b)
- \neg p(c,d)
- p(d,c)
- \neg p(d,e)
- p(e,d)