Dataset: \{p(b), p(c), p(d), q(d)\}

Rule:

\[
\text{goal}(X) \leftarrow p(X) \& \sim q(X)
\]

Instances:

\[
\begin{align*}
\text{goal}(a) & : \leftarrow p(a) \& \sim q(a) \\
\text{goal}(b) & : \leftarrow p(b) \& \sim q(b) \\
\text{goal}(c) & : \leftarrow p(c) \& \sim q(c) \\
\text{goal}(d) & : \leftarrow p(d) \& \sim q(d)
\end{align*}
\]

Result: \{\text{goal}(b), \text{goal}(c)\}
Dataset: \{p(b), p(c), p(d), q(d)\}

Rule:
\[
\text{goal}(f(X)) :- p(X) \land \neg q(X)
\]

Instances:
\[
\text{goal}(a) :- p(a) \land \neg q(a)
\]
\[
\text{goal}(f(a)) :- p(f(a)) \land \neg q(f(a))
\]
\[
\text{goal}(f(f(a))) :- p(f(f(a))) \land \neg q(f(f(a)))
\]
\[
\text{...}
\]

Result: \{\text{goal}(b), \text{goal}(c)\}
Evaluating ground queries

Matching

Evaluating queries with variables

Computational Analysis
Evaluating Ground Queries
We start with a dataset and a query and apply the following to each rule.

(1) If the body of a query rule is a single atom, we check whether that atom is contained in our dataset. If so, the body is true.

(2) If the body is a negated atom, we check whether the atom is contained in our dataset. If so, the body is false. If the atom is not contained in our dataset, then the body is true.

(3) If the body is a conjunction of literals, we execute this procedure on the first conjunct. If the answer is true, we move on to the next conjunct and so forth until we are done. If the answer to any one of the conjuncts is false, then the value of the body as a whole is false.
The value of a query with multiple rules is the union of the values of each of the rules in the query.
Example

Dataset: \{p(a,b), p(b,c), p(c,d)\}

Query:

\[
\begin{align*}
goal(a) & :- p(a,c) \\
goal(b) & :- p(a,b) \land p(b,a) \\
goal(c) & :- p(c,d) \land \neg p(d,c)
\end{align*}
\]

Result: \{\} \cup \{\} \cup \{goal(c)\} = \{goal(c)\}
Matching
Matching is the process of determining whether a pattern (an expression with or without variables) matches an instance (an expression without variables), i.e. whether the two expressions can be made identical by appropriate substitutions for the variables in the pattern.
A substitution is a finite set of pairs of variables and terms, called replacements.

\{X \leftarrow a, Y \leftarrow b\}

The result of applying a substitution \(\sigma\) to an expression \(\phi\) is the expression \(\phi\sigma\) obtained from \(\phi\) by replacing every occurrence of every variable with a binding in the substitution by the term to which it is bound.

\[p(X, b)\{X \leftarrow a, Y \leftarrow b\} = p(a, b) \]
\[q(X, Y, X)\{X \leftarrow a, Y \leftarrow b\} = q(a, b, a) \]
A substitution σ is a *matcher* for a pattern and an instance if and only if applying the substitution to the pattern results in the given instance.

\[
\begin{align*}
p(X, b)\{X \leftarrow a, Y \leftarrow b\} &= p(a, b) \\
q(X, Y, X)\{X \leftarrow a, Y \leftarrow b\} &= q(a, b, a)
\end{align*}
\]

Here, $\{X \leftarrow a, Y \leftarrow b\}$ is a matcher for $p(X, b)$ and $p(a, b)$. It is also a matcher for $q(X, Y, X)$ and $q(a, b, a)$.
(1) If the pattern is a symbol and the instance is the same symbol, then the procedure succeeds, returning the unmodified substitution as result.

(2) If the pattern is a symbol and the instance is a different symbol or a compound expression, then the procedure fails.

(3) If the pattern is a variable with a binding, we compare the binding for the variable with the given instance. If they are identical, the procedure succeeds, returning the unmodified substitution as result; otherwise it fails.

(4) If the pattern is a variable without a binding, we include a binding for the variable in the given instance and we return that substitution as a result.

(5) If the pattern is a compound expression and the instance is a compound expression of the same length, we iterate across the pattern and the instance.

(6) If the pattern is a compound expression and the instance is a symbol or a compound expression of a different length, the procedure fails.
Compare: \(p(X, Y), p(a, b), \{\} \)

Compare: \(p, p, \{\} \)

Result: \(\{\} \)

Compare: \(X, a, \{\} \)

Result: \(\{X \leftarrow a\} \)

Compare: \(Y, b, \{X \leftarrow a\} \)

Result: \(\{X \leftarrow a, Y \leftarrow b\} \)

Result: \(\{x \leftarrow a, y \leftarrow b\} \)
Example

Compare: \(p(x, x), p(a, a), \emptyset \)

Compare: \(p, p, \emptyset \)
Result: \(\emptyset \)

Compare: \(x, a, \emptyset \)
Result: \(\{ x \leftarrow a \} \)

Compare: \(x, a, \{ x \leftarrow a \} \)
Result: \(\{ x \leftarrow a \} \)

Result: \(\{ x \leftarrow a \} \)
Example

Compare: \(p(x, x), p(a, b), \emptyset \)
 Compare: \(p, p, \emptyset \)
 Result: \(\emptyset \)

Compare: \(x, a, \emptyset \)
 Result: \(\{x \leftarrow a\} \)

Compare: \(x, b, \{x \leftarrow a\} \)
 Result: false
Result: false
Evaluating Queries with Variables
(1) If the body of the rule is an atom, we try matching the atom to the factoids in our dataset. For each factoid that matches the atom, we add the corresponding substitution to our answer set; and we return the set of all substitutions obtained in this way.

(2) If the query is a negation, we execute our procedure on the argument of the negation and the given substitution. If the result is a non-empty set (i.e. there are substitutions that work), then the negation is false and we return false as answer. If the result of the recursive execution is the empty set (i.e. there are no substitutions that work), then the negation as a whole is true and we return the singleton set containing the given substitution as a result.

(3) If our query is a conjunction, we execute our procedure on the first conjunct and the given substitution. We then iterate over the list of answers, for each substitution executing the procedure on the remaining conjuncts and that substitution and return the resulting substitutions.
The value of a query with multiple rules is the union of the values of each of the rules in the query.
Example

Dataset: \{p(a,b), p(a,c), p(b,c), p(c,d)\}

Query:

\[
goal(Y) :- p(a,Y)
\]

Result: \{goal(b), goal(c)\}
Example

Dataset: \{p(a,b), p(a,c), p(b,c), p(c,d)\}

Query:

\[
\text{goal}(Y) :- p(a,Y) \land p(Y,d)
\]

Result: \{goal(c)\}
Example

Dataset: \{p(a,b), p(a,c), p(b,c), p(c,d)\}

Query:

\[\text{goal}(Y) :- \ p(a,Y) \ & \ \neg p(Y,d) \]

Result: \{\text{goal}(b)\}
Sierra
Dataset: \{p(a,b), p(b,c), q(c)\}

Query: \texttt{goal}(X,Y) :- p(X,Y) & q(Y)

Trace:
\begin{itemize}
\item Call: \texttt{goal}(X,Y)
\item Call: \texttt{p}(X,Y)
\item Exit: \texttt{p}(a,b)
\item Call: \texttt{q}(b)
\item Fail: \texttt{q}(b)
\item Redo: \texttt{p}(X,Y)
\item Exit: \texttt{p}(b,c)
\item Call: \texttt{q}(c)
\item Exit: \texttt{q}(c)
\item Call: \texttt{goal}(b,c)
\end{itemize}