Logic Programming

View Definitions

Michael Genesereth
Computer Science Department
Stanford University
parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)
parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

grandparent(art,cal)
grandparent(art,cam)
grandparent(art,cat)
grandparent(art,coe)
Views as Named Queries

goal(X, Z) :- parent(X, Y) & parent(Y, Z)

\[\]

grandparent(X, Z) :- parent(X, Y) & parent(Y, Z)
Deduction

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

\[+ \]

\[
\text{grandparent}(X,Z) :- \text{parent}(X,Y) \& \text{parent}(Y,Z)
\]

\[
= \\
\text{grandparent}(\text{art},\text{cal}) \\
\text{grandparent}(\text{art},\text{cam}) \\
\text{grandparent}(\text{art},\text{cat}) \\
\text{grandparent}(\text{art},\text{coe})
\]

Base relation

View relation
Benefits

Economy - fewer facts need to be stored

Less chance of getting out of sync

View definitions work for any number of objects

More expressive (e.g. recursive definitions)
Syntax
A **constant** is a string of lower case letters, digits, underscores, and periods *or* a string of ascii characters within double quotes.

```plaintext
joe, bill, cs151, 3.14159
person, worksfor, office
the_house_that_jack_built,
"Mind your p’s & q’s!"
```

A **variable** is either a lone underscore or a string of letters, digits, underscores beginning with an upper case letter.

```plaintext
X   Y23    Somebody   _
```
Terms

Symbols
 art
 bob

Variables
 X
 Y23

Compound Terms
 pair(art,bob)
 pair(X,Y23)
 pair(pair(art,bob),pair(X,Y23))
Atoms

\[p(a, b) \]
\[p(a, x) \]
\[p(Y, c) \]

Negations

\[\neg p(a, b) \]

Literals (atoms or negations of atoms)

\[p(a, Y) \]
\[\neg p(a, Y) \]

An atom is a positive literal.
A negations is a negative literal.
r(X, Y) :- p(X, Y) & ~q(Y)

(1) View relations in the head (not just goal).
(2) Body may mention view relations as well as base relations.
A ruleset is a collection of rules.

Example:

\begin{align*}
 r(X,Y) & :- p(X,Y) \& \neg q(Y) \\
 p(X,Y) & :- f(X,Y) \\
 p(X,Y) & :- m(X,Y)
\end{align*}
Dataset

\[\begin{align*}
p(a,b) \\
p(a,c) \\
q(b,c) \\
r(a) \\
r(c) \\
\end{align*} \]

Ruleset

\[\begin{align*}
s(X,Y) & :\ - \ p(X,Y) \\
s(X,Y) & :\ - \ q(X,Y) \\
t(X,Y) & :\ - \ s(X,Y) \ & \land \ & \neg r(Y) \\
\end{align*} \]
A ruleset is **compatible** with a dataset if and only if

(1) all symbols shared between the dataset and the ruleset are of the same type (symbol, constructor, predicate)

(2) all constructors and predicates have the same arity

(3) none of the predicates in the *dataset* appear in the *heads* of any rules in the logic program.

The **vocabulary** of a basic logic program is the union of the vocabularies of the dataset and the logic program.
Multiple Relations

\[f(X,Y) :\neg p(X,Y) \land q(X) \]
\[m(X,Y) :\neg p(X,Y) \land \neg q(X) \]

View Relations in Subgoals

\[g(X,Z) :\neg f(X,Y) \land p(Y,Z) \]

Recursive Relations

\[a(X,Z) :\neg p(X,Z) \]
\[a(X,Z) :\neg p(X,Y) \land a(Y,Z) \]
Restrictions

Safety

Stratification
Semantics
The **Herbrand universe** for a basic logic program is the set of all *ground terms* that can be formed from the symbols and constructors in the vocabulary.

The **Herbrand base** for a basic logic program is the set of all *ground atoms* that can be formed from the vocabulary.

An **interpretation** of a basic logic program is an arbitrary *subset* of the program’s Herbrand base.

A **model** of a basic logic program is an interpretation that *satisfies* the program (definition to follow).
An **instance of a rule** is a rule in which all variables have been consistently replaced by ground terms.

Rule

\[r(X, Y) :- p(X, Y) \land \neg q(Y) \]

Herbrand Universe

\{a, b\}

Instances

\[r(a, a) :- p(a, a) \land \neg q(a) \]
\[r(a, b) :- p(a, b) \land \neg q(b) \]
\[r(b, a) :- p(b, a) \land \neg q(a) \]
\[r(b, b) :- p(b, b) \land \neg q(b) \]
An interpretation Γ satisfies a ground atom ϕ if and only if ϕ is in Γ. Γ satisfies a ground negation $\neg\phi$ if and only if ϕ is not in Γ. Γ satisfies a ground rule $\phi :- \phi_1 \& \ldots \& \phi_n$ if and only if Γ satisfies ϕ whenever it satisfies ϕ_1, \ldots, ϕ_n.

An interpretation D satisfies a basic logic program if and only if (1) all of the elements of the constituent dataset are included in D and (2) D satisfies all instances of all of the rules in the constituent ruleset.
Example

Dataset
- \(p(a, b) \)
- \(p(b, c) \)
- \(p(c, d) \)
- \(p(d, c) \)

Ruleset
- \(r(X, Y) \) :- \(p(X, Y) \) & \(\sim p(Y, X) \)

Model
- \(p(a, b) \)
- \(p(b, c) \)
- \(p(c, d) \)
- \(p(d, c) \)
- \(r(a, b) \)
- \(r(b, c) \)
Non-Examples

Dataset
\[p(a,b) \]
\[p(b,c) \]
\[p(c,d) \]
\[p(d,c) \]

Ruleset
\[r(X,Y) :- p(X,Y) \land \neg p(Y,X) \]

Not Models
\[p(a,b) \]
\[p(b,c) \]
\[p(c,d) \]
\[p(d,c) \]
\[r(a,b) \]
\[r(b,c) \]
Multiple Models

Dataset
- \(p(a, b) \)
- \(p(b, c) \)
- \(p(c, d) \)
- \(p(d, c) \)

Ruleset
- \(r(X, Y) :\neg p(X, Y) \land \neg p(Y, X) \)

Models
- \(p(a, b) \)
- \(p(b, c) \)
- \(p(c, d) \)
- \(p(d, c) \)
- \(r(a, b) \)
- \(r(b, c) \)
- \(r(c, d) \)
- \(r(d, c) \)
We want our definitions to be *if and only if*. We want to include among our conclusions only those facts that *must* be true.

All factoids in dataset *must* be true.
All factoids required by rules *must* be true.
Arbitrary factoids should be excluded.

What we want is logical entailment. A factoid is **logically entailed** by a basic logic program if and only if it is true in *every* model of the program, i.e. the set of conclusions is exactly the intersection of all models of the program.
A model D of a logic program P is **minimal** if and only if no proper subset of D is a model of P.

Models

- $p(a,b)$
- $p(b,c)$
- $p(c,d)$
- $p(d,c)$
- $r(a,b)$
- $r(b,c)$
- $r(c,d)$

If a program has just one minimal model, then every factoid true in that model is trivially true in *every* model.
A logic program that does not contain any negations has a **unique minimal model**.

A logic program with negations can have **more than one minimal model** (in addition to multiple non-minimal models). Examples to follow.

If a program is *semipositive* or *stratified* (as defined below), then once again there is only one minimal model.
Semipositive Programs
A **semipositive** program is one in which negations apply only to base relations, i.e. there are no subgoals with negated views.

Example:

\[
\begin{align*}
 r(X) & : \ p(X,Y) \ & q(Y) \\
 q(Y) & : \ m(Y,Z) \ & \sim n(Z)
\end{align*}
\]

Non-Example:

\[
\begin{align*}
 r(X) & : \ p(X,Y) \ & \sim q(Y) \\
 q(Y) & : \ m(Y,Z) \ & \sim n(Z)
\end{align*}
\]
An **instance of a rule** is a rule in which all variables have been consistently replaced by ground terms.

Rule

\[
 r(X,Y) :- p(X,Y) \land \neg q(Y)
\]

Herbrand Universe

\[
\{a, b\}
\]

Instances

\[
\begin{align*}
 r(a,a) & :- p(a,a) \land \neg q(a) \\
 r(a,b) & :- p(a,b) \land \neg q(b) \\
 r(b,a) & :- p(b,a) \land \neg q(a) \\
 r(b,b) & :- p(b,b) \land \neg q(b)
\end{align*}
\]
The result of applying a rule r to a dataset Δ (written $\nu(r,\Delta)$) is the set of all ψ such that (1) ψ is the head of an arbitrary instance of r, (2) every positive subgoal in the instance is a member of Δ, and (3) no negative subgoal in the instance is a member of Δ.
Using this notion, we define the *closure* of a semipositive program Ω on a dataset Δ (written $C(\Omega,\Delta)$) to be the result of repeatedly applying rules in Ω to Δ as follows.

$$
\begin{align*}
\Gamma_0 &= \Delta \\
\Gamma_{n+1} &= \bigcup \nu(r, \Gamma_0 \cup \ldots \cup \Gamma_n) \text{ for all } r \text{ in } \Omega \\
C(\Omega,\Delta) &= \bigcup \Gamma_i.
\end{align*}
$$

In other words, $C(\Omega,\Delta)$ is the fixpoint of ν.

Ruleset

\[
\begin{align*}
 p(X) & : - \ edge(X,Y) \\
 q(X,Y) & : - \ edge(X,Y) \\
 q(X,Y) & : - \ edge(Y,X) \\
 r(X,Y) & : - \ edge(X,Y) \ & \ edge(Y,X) \\
 s(X,Y) & : - \ edge(X,Y) \\
 s(X,Z) & : - \ edge(X,Y) \ & \ s(Y,Z)
\end{align*}
\]

Dataset

\[
\begin{align*}
 \text{edge}(a,b) \\
 \text{edge}(b,c) \\
 \text{edge}(c,d) \\
 \text{edge}(d,c)
\end{align*}
\]
Ruleset

\[
\begin{align*}
p(X) & : \text{edge}(X,Y) \\
q(X,Y) & : \text{edge}(X,Y) \\
q(X,Y) & : \text{edge}(Y,X) \\
r(X,Y) & : \text{edge}(X,Y) \land \text{edge}(Y,X) \\
s(X,Y) & : \text{edge}(X,Y) \\
s(X,Z) & : \text{edge}(X,Y) \land s(Y,Z)
\end{align*}
\]

Dataset

\[
\begin{align*}
\text{edge}(a,b) \\
\text{edge}(b,c) \\
\text{edge}(c,d) \\
\text{edge}(d,c) \\
p(a) \\
p(b) \\
p(c) \\
p(d)
\end{align*}
\]
Ruleset

\[p(X) :- \text{edge}(X,Y) \]
\[q(X,Y) :- \text{edge}(X,Y) \]
\[q(X,Y) :- \text{edge}(Y,X) \]
\[r(X,Y) :- \text{edge}(X,Y) \land \text{edge}(Y,X) \]
\[s(X,Y) :- \text{edge}(X,Y) \]
\[s(X,Z) :- \text{edge}(X,Y) \land s(Y,Z) \]

Dataset

\[\text{edge}(a,b) \quad q(a,b) \]
\[\text{edge}(b,c) \quad q(b,c) \]
\[\text{edge}(c,d) \quad q(c,d) \]
\[\text{edge}(d,c) \quad q(d,c) \]
\[p(a) \quad q(b,a) \]
\[p(b) \quad q(c,b) \]
\[p(c) \]
\[p(d) \]
Ruleset

\begin{align*}
p(X) & :\text{--} \text{edge}(X,Y) \\
q(X,Y) & :\text{--} \text{edge}(X,Y) \\
q(X,Y) & :\text{--} \text{edge}(Y,X) \\
r(X,Y) & :\text{--} \text{edge}(X,Y) \ \& \ \text{edge}(Y,X) \\
s(X,Y) & :\text{--} \text{edge}(X,Y) \\
s(X,Z) & :\text{--} \text{edge}(X,Y) \ \& \ s(Y,Z)
\end{align*}

Dataset

\begin{align*}
\text{edge}(a,b) & \quad q(a,b) \\
\text{edge}(b,c) & \quad q(b,c) \\
\text{edge}(c,d) & \quad q(c,d) \\
\text{edge}(d,c) & \quad q(d,c) \\
p(a) & \quad q(b,a) \\
p(b) & \quad q(c,b) \\
p(c) & \quad r(c,d) \\
p(d) & \quad r(d,c)
\end{align*}
Example

Ruleset

\[
\begin{align*}
p(X) & : = \text{edge}(X,Y) \\
q(X,Y) & : = \text{edge}(X,Y) \\
q(X,Y) & : = \text{edge}(Y,X) \\
r(X,Y) & : = \text{edge}(X,Y) \land \text{edge}(Y,X) \\
s(X,Y) & : = \text{edge}(X,Y) \\
s(X,Z) & : = \text{edge}(X,Y) \land s(Y,Z)
\end{align*}
\]

Dataset

\[
\begin{align*}
\text{edge}(a,b) & \quad \text{q}(a,b) \quad \text{s}(a,b) \\
\text{edge}(b,c) & \quad \text{q}(b,c) \quad \text{s}(b,c) \\
\text{edge}(c,d) & \quad \text{q}(c,d) \quad \text{s}(c,d) \\
\text{edge}(d,c) & \quad \text{q}(d,c) \quad \text{s}(d,c) \\
p(a) & \quad \text{q}(b,a) \\
p(b) & \quad \text{q}(c,b) \\
p(c) & \quad \text{r}(c,d) \\
p(d) & \quad \text{r}(d,c)
\end{align*}
\]
Example

Ruleset

\[
\begin{align*}
p(X) & : \text{edge}(X,Y) \\
q(X,Y) & : \text{edge}(X,Y) \\
q(X,Y) & : \text{edge}(Y,X) \\
r(X,Y) & : \text{edge}(X,Y) \land \text{edge}(Y,X) \\
s(X,Y) & : \text{edge}(X,Y) \\
s(X,Z) & : \text{edge}(X,Y) \land s(Y,Z)
\end{align*}
\]

Dataset

\[
\begin{align*}
\text{edge}(a,b) & & q(a,b) & & s(a,b) \\
\text{edge}(b,c) & & q(b,c) & & s(b,c) \\
\text{edge}(c,d) & & q(c,d) & & s(c,d) \\
\text{edge}(d,c) & & q(d,c) & & s(d,c) \\
p(a) & & q(b,a) & & s(a,c) \\
p(b) & & q(c,b) & & s(b,d) \\
p(c) & & r(c,d) & & s(c,c) \\
p(d) & & r(d,c) & & s(d,d)
\end{align*}
\]
Example

Ruleset

\[
p(X) :- \text{edge}(X,Y) \\
q(X,Y) :- \text{edge}(X,Y) \\
q(X,Y) :- \text{edge}(Y,X) \\
r(X,Y) :- \text{edge}(X,Y) \land \text{edge}(Y,X) \\
s(X,Y) :- \text{edge}(X,Y) \\
s(X,Z) :- \text{edge}(X,Y) \land s(Y,Z)
\]

Dataset

\[
\begin{align*}
\text{edge}(a,b) & \quad q(a,b) & \quad s(a,b) \\
\text{edge}(b,c) & \quad q(b,c) & \quad s(b,c) \\
\text{edge}(c,d) & \quad q(c,d) & \quad s(c,d) \\
\text{edge}(d,c) & \quad q(d,c) & \quad s(d,c) \\
p(a) & \quad q(b,a) & \quad s(a,c) \\
p(b) & \quad q(c,b) & \quad s(b,d) \\
p(c) & \quad r(c,d) & \quad s(c,c) \\
p(d) & \quad r(d,c) & \quad s(d,d) \\
\end{align*}
\]
Stratified Negation
Multiple *Minimal* Models

Dataset

\[
P(a, b) \\
P(b, a)
\]

Ruleset

\[
r(X) :- p(X, Y) & \neg r(Y)
\]

Interpretations

\[
\begin{array}{cccc}
P(a, b) & P(a, b) & P(a, b) & P(a, b) \\
P(b, a) & P(b, a) & P(b, a) & P(b, a) \\
r(a) & r(b) & r(a) & r(b)
\end{array}
\]

Is r(a) true or not? What about r(b)?

NB: The intersection of all models is not a model!
The *dependency graph* for a set of rules is a directed graph in which (1) the nodes are the relations mentioned in the head and bodies of the rules and (2) there is an arc from a node \(p \) to a node \(q \) whenever \(p \) occurs with the body of a rule in which \(q \) is in the head.

\[
\begin{align*}
 r(X,Y) & : - p(X,Y) \& q(X,Y) \\
 s(X,Y) & : - r(X,Y) \\
 s(X,Z) & : - r(X,Y) \& t(Y,Z) \\
 t(X,Z) & : - s(X,Y) \& s(Y,X)
\end{align*}
\]

A set of rules is *recursive* if it contains a cycle. Otherwise, it is *non-recursive*.
The negation in a set of rules is said to be *stratified* if and only if there is no recursive cycle in the dependency graph involving a negation.

Stratified Negation:

\[
\begin{align*}
 r(X,Z) &:\ p(X,Y) \\
 r(X,Z) &:\ r(X,Y) \land r(Y,Z)
\end{align*}
\]

Negation that is not stratified:

\[
\begin{align*}
 r(X,Z) &:\ p(X,Y) \\
 r(X,Z) &:\ p(X,Y) \land \neg r(Y,Z)
\end{align*}
\]

All negations must be stratified.
We say that a set of view definitions is *stratified* if and only if its rules can be partitioned into *strata* in such a way that

(1) every stratum contains at least one rule

(2) the rules defining relations that appear in positive goals of a rule appear in the same stratum as that rule *or* in some lower stratum

(3) the rules defining relations that appear in negative subgoals of a rule occur in some *lower* stratum (not the same stratum)
Example

\[r(X,Y) \leftarrow q(X,Y) \]
\[r(X,Z) \leftarrow q(X,Y) \land r(Y,Z) \]
\[s(X,Y) \leftarrow p(X) \land p(Y) \land \neg r(X,Y) \]

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>[s(X,Y) \leftarrow p(X) \land p(Y) \land \neg r(X,Y)]</td>
</tr>
</tbody>
</table>
| 1 | \[r(X,Y) \leftarrow q(X,Y) \]
\[r(X,Z) \leftarrow q(X,Y) \land r(Y,Z) \] |

Non-example

\[r(X,Y) \leftarrow p(X) \land p(Y) \land q(X,Y) \]
\[s(X,Y) \leftarrow r(X,Y) \land \neg s(Y,X) \]
The *extension* of a logic program \(\Omega \) with strata \(\Omega_1, \ldots, \Omega_k \) on a dataset \(\Delta \) (written \(E(\Omega,\Delta) \)) is the result of repeatedly applying the rules in \(\Omega_1, \ldots, \Omega_k \) to \(\Delta \) as follows.

\[
\Delta_0 = \Delta \\
\Delta_{n+1} = \Delta_n \cup C(\Omega_{n+1}, \Delta_n)
\]

The extension of a program with \(k \) strata is \(\Delta_k \).
Ruleset

\[p(X) :- \text{edge}(X,Y) \]
\[q(X,Y) :- \text{edge}(X,Y) \]
\[q(X,Y) :- \text{edge}(Y,X) \]
\[r(X,Y) :- \text{edge}(X,Y) \land \text{edge}(Y,X) \]
\[s(X,Y) :- \text{edge}(X,Y) \]
\[s(X,Z) :- \text{edge}(X,Y) \land s(Y,Z) \]
\[t(X,Y) :- p(X) \land p(Y) \land \neg s(X,Y) \]

Dataset

\[\text{edge}(a,b) \]
\[\text{edge}(b,c) \]
\[\text{edge}(c,d) \]
\[\text{edge}(d,c) \]
Stratum 2 Rules

\[t(X, Y) :- p(X) \land p(Y) \land \neg s(X, Y) \]

Stratum 1 Rules

\[p(X) :- edge(X, Y) \]
\[q(X, Y) :- edge(X, Y) \]
\[q(X, Y) :- edge(Y, X) \]
\[r(X, Y) :- edge(X, Y) \land edge(Y, X) \]
\[s(X, Y) :- edge(X, Y) \]
\[s(X, Z) :- edge(X, Y) \land s(Y, Z) \]
Stratum 1 Rules

- \(p(X) :- \) edge\((X,Y)\)
- \(q(X,Y) :- \) edge\((X,Y)\)
- \(q(X,Y) :- \) edge\((Y,X)\)
- \(r(X,Y) :- \) edge\((X,Y)\) \& edge\((Y,X)\)
- \(s(X,Y) :- \) edge\((X,Y)\)
- \(s(X,Z) :- \) edge\((X,Y)\) \& s\((Y,Z)\)

Dataset

- edge\((a,b)\) \(q(a,b) \) \(s(a,b) \)
- edge\((b,c)\) \(q(b,c) \) \(s(b,c) \)
- edge\((c,d)\) \(q(c,d) \) \(s(c,d) \)
- edge\((d,c)\) \(q(d,c) \) \(s(d,c) \)
- \(p(a) \)
- \(q(b,a) \) \(s(a,c) \)
- \(p(b) \)
- \(q(c,b) \) \(s(b,d) \)
- \(p(c) \)
- \(r(c,d) \) \(s(c,c) \)
- \(p(d) \)
- \(r(d,c) \) \(s(d,d) \)
- \(s(a,d) \)
Stratum 2 Rule

\[t(X, Y) \leftarrow p(X) \land p(Y) \land \neg s(X, Y) \]

Dataset

<table>
<thead>
<tr>
<th>edge(a,b)</th>
<th>q(a,b)</th>
<th>s(a,b)</th>
<th>t(a,a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>edge(b,c)</td>
<td>q(b,c)</td>
<td>s(b,c)</td>
<td>t(b,a)</td>
</tr>
<tr>
<td>edge(c,d)</td>
<td>q(c,d)</td>
<td>s(c,d)</td>
<td>t(b,b)</td>
</tr>
<tr>
<td>edge(d,c)</td>
<td>q(d,c)</td>
<td>s(d,c)</td>
<td>t(c,a)</td>
</tr>
<tr>
<td>p(a)</td>
<td>q(b,a)</td>
<td>s(a,c)</td>
<td>t(c,b)</td>
</tr>
<tr>
<td>p(b)</td>
<td>q(c,b)</td>
<td>s(b,d)</td>
<td>t(d,a)</td>
</tr>
<tr>
<td>p(c)</td>
<td>r(c,d)</td>
<td>s(c,c)</td>
<td>t(d,b)</td>
</tr>
<tr>
<td>p(d)</td>
<td>r(d,c)</td>
<td>s(d,d)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>s(a,d)</td>
</tr>
</tbody>
</table>
Extension of a stratified logic program is unique. Multiple stratifications are sometimes possible, but all produce the same result.

Extension of stratified logic program *without constructors* is finite. *Without* recursion it can be computed in polynomial time. *With* recursion, can be computed in exponential time.

Extension of a stratified logic program *with constructors* may be infinite. The extension is still well-defined but obviously not computable.
Safety
A rule is *safe* if and only if every variable in the head appears in some positive subgoal in the body and every variable in a negative subgoal appears in a prior positive subgoal.

Safe Rule:

\[r(X,Z) :- p(X,Y) \land q(Y,Z) \land \neg r(X,Y) \]

Unsafe Rule:

\[r(X,Z) :- p(X,Y) \land q(Y,X) \]

Unsafe Rule:

\[r(X,Y) :- p(X,Y) \land \neg q(Y,Z) \]
Ruleset

\[s(X,Y,Z) :- p(X,Y) \]

Dataset

\[p(a,b) \]

Output for \(s \)

\[s(a,b,a) \]
\[s(a,b,b) \]
\[s(a,b,c) \]
\[s(a,b,d) \]
\[s(a,b,e) \]
\[\ldots \]

Alternative

\[s(X,Y,Z) :- p(X,Y) \& \text{something}(Z) \]
Unbound Variables in Negation

Ruleset

\[t(X,Y) \ :- \ p(X,Y) \ & \ \neg q(Y,Z) \]

Dataset

\begin{align*}
 & p(a,b) \\
 & p(a,c) \\
 & q(c,d)
\end{align*}

Output

\begin{align*}
 & t(a,b) \\
 & t(a,c)
\end{align*}

Alternatives

\begin{align*}
 t(X,Y) \ :- \\
 & p(X,Y) \ & \text{evaluate(countofall}(Z,q(Y,Z)),0)
\end{align*}

\begin{align*}
 t(X,Y) \ :- \ p(X,Y) \ & \ \neg qqq(Y) \\
 qqq(Y) \ :- \ q(Y,Z)
\end{align*}