CS 151 Project:
Movie Q&A Chatbot

Lara Bagdasarian, Emma Zhong

Outline

Introduction

Demo

Parsing procedure

Why logic programming?

Introduction

e Movie Q&A ChatBot:
o Parsing NL input + outputting NL answer
o Disambiguation with user engagement

e Parsing using Logic Programming

Demo

https://swish.swi-prolog.org/p/movie_chatbot.pl

https://swish.swi-prolog.org/p/movie_chatbot.pl
https://swish.swi-prolog.org/p/movie_chatbot.pl

Project Architecture

CSV Database

User Input: Natural

language query

Python script—p- IR EIELER

Control Flow

—

Parse query
language

Chatbot Response

Retreive relevant data
from Prolog database

Summarize results in
natural language
response

Prompt user to clarify
ambiguous info

https://www.lucidchart.com/documents/edit/e0641e8b-d174-4216-a8d5-c862791466cb/0?callback=close&name=slides&callback_type=back&v=1452&s=720

Query to Response: Inside a Query

[Question: What are some movies by Quentin Tarantino

(1. Tokenization > [“What”, “are”, “some”, “movies”, “by”, “Quentin”, “Tarantino”]

2. Search for named
entities

)

3. Pattern recognition:
- Recognize desired
attribute
Recognize provided
info

N
N

Find candidate members of database
(“Quentin”, “Tarantino”) including partial
database entries e.g. “Tarantino”

VU

e.g. Pattern1: [QW] [Q Attr] [P Attr] [€ db]
QW = What; Q Attr = movies; P Attr = director;
€ db = Quentin Tarantino

[Casing is useful info

strategy

~
[Bottom-up parsing

Actors can also be
directors so we can’t
rely on a named entity
to tell us the nature of
the info provided

Definite clause grammars and logic programming

What is a DCG?

DCGs define sentence structure in terms of formal substructures
Entire query represents terminal rule head

Particular info we need from query represents non-terminals

query —-—> g %

question phrase & question phrase -->
attribute phrase & preposition &
attribute phrase & question word

word from db

[From which movie was the actor Kyle MaclLachlan?]

Definite clause grammars: an example

Query
9]0 Attr ProvidInfo
What QAttr PAttr Quentin Tarantino

W

are some movies directed by

Definite clause grammars: an example

query patternl (QW, QAttr, FromDB, PAttr)) :-
question phrase (QW) & attribute phrase (QAttr) &

named entity(ProvidedInfo) & attribute phrase (PAttr)

[What are some movies that Kyle MacLachlan has starred in?]

Definite clause grammars: an example

query patternl (QW, QAttr, FromDB, PAttr)) :-
question phrase (QW) & attribute phrase (QAttr) &

named entity (ProvidedInfo) & attribute phrase (PAttr)

attribute phrase (Phrase, Attr) :-
evaluate (appendstring (attribute (Attr), Suffix), Phrase)

[What are some movies that Kyle MacLachlan has starred in?]

Definite clause grammars: an example

query patternl (QW, QAttr, FromDB, PAttr)) :-
question phrase (QW) & attribute phrase (QAttr) &

named entity (ProvidedInfo) & attribute phrase (PAttr)

attribute phrase (Phrase, Attr) :-
evaluate (appendstring (attribute (Attr), Suffix), Phrase)

attribute (“star”)
attribute (“direct”)
attribute (Ymovie”)

[What are some movies that Kyle MacLachlan has starred in?]

What sorts of queries do we support?

No explicit question
attribute provided

There are several stars with
the name Smith; we prompt
the user to clarify which

S <

Tarantino was both an actor
and director; we prompt the
user to clarify

Conclusion: Why Logic Programming

Advantages:

e Understandable: reading our implementation of DCG rules structurally
mirrors reading a query input itself

e Predictive: in our code it is visibly apparent what query formulations are
supported and which are not

e Easily generalizable: our DCG can be applied to other scenarios with

minimal revision
o What about a music info chatbot?
o Q&A chatbot for a website?

Conclusion: Challenges

e Control flow when engaging with user when non-state-based can become
unwieldy with logic programming

e Naming subproblems for easy reference

Q&A

